Pre-Symptomatic Prediction of Plant Drought Stress Using Dirichlet-Aggregation Regression on Hyperspectral Images
نویسندگان
چکیده
Pre-symptomatic drought stress prediction is of great relevance in precision plant protection, ultimately helping to meet the challenge of “How to feed a hungry world?”. Unfortunately, it also presents unique computational problems in scale and interpretability: it is a temporal, large-scale prediction task, e.g., when monitoring plants over time using hyperspectral imaging, and features are ‘things’ with a ‘biological’ meaning and interpretation and not just mathematical abstractions computable for any data. In this paper we propose Dirichletaggregation regression (DAR) to meet the challenge. DAR represents all data by means of convex combinations of only few extreme ones computable in linear time and easy to interpret. Then, it puts a Gaussian process prior on the Dirichlet distributions induced on the simplex spanned by the extremes. The prior can be a function of any observed meta feature such as time, location, type of fertilization, and plant species. We evaluated DAR on two hyperspectral image series of plants over time with about 2 (resp. 5.8) Billion matrix entries. The results demonstrate that DAR can be learned efficiently and predicts stress well before it becomes visible
منابع مشابه
Early Identification of Plant Stress in Hyperspectral Images
In recent years, remarkable results have been achieved in the early detection of weeds, plant diseases and insect pests in crops. These achievements are related both to the development of non-invasive, high resolution optical sensors and data analysis methods that are able to cope with the resolution, size and complexity of the signals from these sensors. Especially hyperspectral cameras are ca...
متن کاملPredicting of the Quality Attributes of Orange Fruit Using Hyperspectral Images
Background: Hyperspectral image analysis is a fast and non-destructive technique that is being used to measure quality attributes of food products. This research investigated the feasibility of predicting internal quality attributes, such as Total Soluble Solids (TSS), pH, Titratable Acidity (TA), and maturity index (TSS/TA); and external quality attributes such as color components (L*, a*, b*)...
متن کاملLatent Dirichlet Allocation Uncovers Spectral Characteristics of Drought Stressed Plants
Understanding the adaptation process of plants to drought stress is essential in improving management practices, breeding strategies as well as engineering viable crops for a sustainable agriculture in the coming decades. Hyper-spectral imaging provides a particularly promising approach to gain such understanding since it allows to discover non-destructively spectral characteristics of plants g...
متن کاملImproving the RX Anomaly Detection Algorithm for Hyperspectral Images using FFT
Anomaly Detection (AD) has recently become an important application of target detection in hyperspectral images. The Reed-Xialoi (RX) is the most widely used AD algorithm that suffers from “small sample size” problem. The best solution for this problem is to use Dimensionality Reduction (DR) techniques as a pre-processing step for RX detector. Using this method not only improves the detection p...
متن کاملNondestructive Estimation of Moisture Content, pH and Soluble Solid Contents in Intact Tomatoes Using Hyperspectral Imaging
The objective of this study was to develop a nondestructive method to evaluate chemical components such as moisture content (MC), pH, and soluble solid content (SSC) in intact tomatoes by using hyperspectral imaging in the range of 1000–1550 nm. The mean spectra of the 95 matured tomato samples were extracted from the hyperspectral images, and multivariate calibration models were built by using...
متن کامل